

A Technology & Architecture Integration Project for Product Generation System Design (TAIP)

URL: http://www-ias.jpl.nasa.gov/TAIP/taip.html

JPL Team

(PI) Meemong Lee : System Design Integration

Mark Abajian : PGS Shell

Alan Mazer : Distributed Data Flow System

Laverne Hall : System Architecture/Performance Modeling

Univ. Minnesota

Vipin Kumar : Processor Benchmarking

Task Scheduling

Collaboration

Graham Bothwell: MISR PGS prototyping

Planned Activities

(TAIP)

PGS Shell Application

MISR PGS (L1-L2) Beta Software

TES/ MODIS PGS Software

PGS Simulation

Function Descriptor Validation

Function Emulation

Performance Model Emulation

Technology Evaluation Metric

Design Trade-Off Analysis

Evolvable Software Design Guideline

EOSDIS Product Generation System Model

PGS Architecture Prototyping

Evovable System Design Environment

Technology Evaluation Metric

Function - Software Implementation Unit

Process - Software Execution Unit within which functions share the address space (A set of Functions)

Product - EOSDIS archival Data set

Process Module - Product generation procedure Unit (A set of Processes)

Processor - Hardware Unit (CPU + Memory + File system)

Platform - Product Generation System (A set of Processors)

Data Flow - Inter-process data traffic

Process Flow - Process Execution Sequence

Shared Object (.so file) - Dynamically Loadable Object Code containing a set of Functions

EOSDIS PGS MODEL

(TAIP)

Approach:

A PGS Descriptor Design for expressing

- Product-oriented Process Execution Control Flow
- -Inter-Process Communication using PGS-Specific Data Structures
- Computation & I/O Characteristics of Processing Functions

Status:

PGS model descriptor Implementation

- -Process Module Descriptors
- -Platform Descriptors

PGS Architecture Prototyping

(TAIP)

Approach:

Heterogeneous Distributed Computing Testbed

- Heterogeneous Operating Systems
- Distributed Memory Architecture
- Shared Memory Architecture

PGS Case Study

- High-Fidelity (On-platform
- Architecture Performance Modeling
- Resource Utilization Modeling

Status:

PGS Testbed Configuration at JPL and Univ. MN

PGS Architecture Prototyping

(TAIP)

Approach:

PGS design experiment environment which provides

- Dynamic Process Configuration
- Process Mapping to Heterogeneous Distributed Processors
- Interactive Process Monitoring and Benchmarking

Status:

GEM V 2.5 completion

PGS Shell V 1.0 completion

MISR L1B2 Prototype implementation on PGS Testbed

Technology Evaluation Metric

(TAIP)

Approach:

Technology Impact Analysis Environment Design

- Computational Resource Utilization Model in terms of Relevant Technology Components (CPU, I/O storage)
- PGS Platform Emulation
- PGS Software Emulation

Status:

Network II.5 based PGS Testbed Configuration

Power Challenge System Architecture Model Implementation

MISR L1B2 Process Model Implementation

PGS Software Schedule Change

Software System Complexity

Software Licensing

Testbed Platform Availability

Government Shutdown

Revised Schedule

(TAIP)

	3/95	6/95	9/95	12/95	3/96	6/96	9/96	12/96
GEM Dataflow Engine Heterogeneous Systems Parallel System Support				Į. E	7	A E	2.2	,
PGS Model Process Module Desc. Platform Descriptor	-		<u> </u>	<u> </u>				
PGS Shell GEM Interface MISR PGS Case Study TES PGS Case Study		-		£	24			
PGS Simulation Platform Benchmark PGS Emulation			4	<u> </u>				,
Technology Evaluation Evaluation Metric Documentation/Report		-						

Deliverables

(TAIP)

GEM V 2.5

Demonstration: Multi-Platform Distributed Computing

Supported Platforms: SUN, HP, Alpha, SGI, SGI-Power Challenge

Capabilities

Graphical Dataflow Interpretation

Automated Process Loading & Execution

Automated Inter-Process/Processor Data Transportation

Interactive Data Product Visualization

Performance Monitoring

Limitations

Multi-Level Process Control Flow

Feedback Loop

Heterogeneous Datatype Structures

Deliverables

(TAIP)

PGS Shell V 1.0

Demonstration: MISR L1B2 PGS Beta Software

Supported Platforms: SUN, Indigo II, Power Challenge

Capabilities

Automated GEM Interface from PGS Descriptors

Application Data Structure Handling

Interactive User Input Broadcasting

Embedded Dataflow Control (Looping)

Limitations

Automated Process to Processor Mapping

Transfer of Data referenced by a Pointer across the process boundary